PINE TRAINING ACADEMY

Course Module

YOUR CAREER, OUR PASSION

10 Month Certified Course in ASIC Verification.

Address

D-557, Govindpuram, Ghaziabad, U.P., 201013, India

+91 9999 0 37484

vaibhava.mishra@pinetr ainingacademy.com

8/15/2014

Verification Flow in Design Signoff

Highlights

- Understanding of Black box verification and White box verification
- Understanding of different verification (IP Verification, SoC Verification, Subsystem Verification, Verification IP Design)
- Digital Logic Fundamental like Basic and Advanced Digital.
- Brief Study of C and Object Oriented programming.
- Basic knowledge of Linux and Scripting.
- Hardware Design Language (Verilog).
- Hardware Verification Language (System Verilog)
- Verification Methodology (UVM)
- Brief study of AMBA Bus (APB,AHB,AXI).
- Industrial Project.
- Test and Interview Series after completion of every module.
- Visit from Industry.
- Personality Development program and preparation of Interview and Resume.

	ASIC Verification		
Main	Digital System Design		
Module			
Module -1	Digital System Design:-		
Digital	Introduction to Digital System.		
System	• Number System		
Design.	 Digital Logic Levels 		
	Digital Logic Circuits.		
	 Combinational Logic Circuit. 		
	 Sequential Logic Circuit. 		
	Schematics Entry.		
	• FSM.		
	Timing Fundamental.		
	Assignment of Industrial Project.		
	• Test and Interview Series.		
Module – 2	♦ UNIX		
UNIX	• Basic of UNIX, how different from Windows.		
	Introduction of SHELL.		
	• File and Directories.		
	Home Directories Introduction and .cshrc file		
	formation.		
	• Basic Commands-cp,mv,rm,touch,which, mkdir,cat		
	• UNIX sed, cut, awk, grep (regex), tr commands.		
	• BASH shell scripting, usage of loops, arguments,		
	array.		
Module – 3	C & Object Oriented Programming		
C, OOP	C and Verification		
concept	• Why C is useful in Verification		
	Complete C programming language brief		
	• Object oriented programming and Verification		
	Brief of Object Oriented Programming		
Module -4	Hardware Design Language (Verilog).		
HDL(Hardw	Need of Verilog		
are Design	Abstraction Level		
Language)	• Concurrency		
	Digital Circuit design with Verilog		
	Need of Verification of HDL design		
	• 4 State & 2 State logic		
	Top Down & Bottom up design Methodology		
	Verilog HDL Design Flow		

	• Verilog Syntax and Symantics	
	• Gate level Modelling	
	Date Flow Modelling	
	Data Flow Wodening Dehevioural Level Modelling	
	• Benavioural Level Modelling	
	• Blocking & Non-blocking assignment	
	• Test & Interview questions	
Module – 5	Introduction to System Verilog course objective.	
System	• Introduction: Reasons for using the Hardware	
Verilog(HV	Verification Language.	
L)	• Benefits of System Verilog in Verification.	
	• System Verilog Data types	
	Procedural Statements and Routines	
	• Interface & Virtual Interface	
	Constraint Randomization & Need of Randomization	
	Threads & Interprocess Communication	
	Coverage Metric(Code coverage Functional	
	Coverage)	
	Callbacks	
	• Cross coverage	
	✤ Writing a Test – bench.	
	Test and Interview Series.	
Module-6	Universal Verification Methodology(UVM)	
UVM	UVM Testbench	
Methodology	• UVM Phases	
	• UVM Top-down & Bottom-up approach	
	• UVM Reporting	
	UVM Transaction	
	UVM Configuration	
	UVM Factory	
	• UVM Sequence (also UVM Virtual sequence)	
	• UVM Components(Monitor, Agent, Environment .	
	Sequencer, Driver)	
	• UVM Transaction level Methodology	
	• UVM Callbacks	

Module -7	 Advance Microcontroller Bus Architecture 	5 Week
AMBA Bus	✤ APB	
	✤ AHB	
	✤ AXI	
	Why AMBA is so important for Verification?	
	One Project of Verification IP development for any	
	AMBA bus.	